Stabilization of low-order mixed finite elements for the plane elasticity equations
نویسندگان
چکیده
منابع مشابه
Stabilization of Low-order Mixed Finite Elements for the Stokes Equations
We present a new family of stabilized methods for the Stokes problem. The focus of the paper is on the lowest order velocity-pressure pairs. While not LBB compliant, their simplicity and attractive computational properties make these pairs a popular choice in engineering practice. Our stabilization approach is motivated by terms that characterize the LBB “deficiency” of the unstable spaces. The...
متن کاملMixed finite elements for elasticity
There have been many efforts, dating back four decades, to develop stablemixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displ...
متن کاملRectangular Mixed Finite Elements for Elasticity
We present a family of stable rectangular mixed finite elements for plane elasticity. Each member of the family consists of a space of piecewise polynomials discretizing the space of symmetric tensor fields in which the stress field is sought, and another to discretize the space of vector fields in which the displacement is sought. These may be viewed as analogues in the case of rectangular mes...
متن کاملNonconforming Tetrahedral Mixed Finite Elements for Elasticity
This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...
متن کاملVariable-order finite elements for nonlinear, intrinsic, mixed beam equations
The paper presents variable-order finite elements for nonlinear, mixed, fully intrinsic equations for both non-rotating and rotating blades. The finite element technique allows for hp-adaptivity. Results show that these finite elements lead to very accurate solutions for the static equilibrium state as well as for modes and frequencies for infinitesimal motions about that state. The results bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.11.030